
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Token Gazetteer and Character Gazetteer for Named
Entity Recognition

Giang Nguyen, Štefan Dlugolinský, Michal Laclavík, Martin Šeleng

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 84507 Bratislava, Slovakia

{giang.ui, stefan.dlugolinsky, laclavik.ui, mar-
tin.seleng}@savba.sk

Abstract. Named entity recognition (NER) in information extraction (IE) sys-
tems is usually based on large gazetteers — datasets of well-known and classi-
fied entities. NER is also often performed by independent look-up piece of
code, which is considered as a bottleneck of many NER systems. In this paper,
we present two approaches for building tree gazetteers for NER; i.e. lookup by
token and by character.

Keywords: gazetteer, information extraction, named entity recognition, tokeni-
zation

1 Introduction

Nowadays, named entity recognition (NER) is a very important area in computer
science. A large amount of information is produced every day through numerous me-
dia around us. When some entity is classified as a well-known entity, the next step is
to recognize its frequency in the incoming text and provide its references for next
processing steps. In NER research area, word gazetteer is often used interchangeably
for both the set of entity lists and for the processing resource that uses those lists to
find occurrences of named entities in texts. There is a number of existing gazetteer
implementations available; e.g. Ontotext’s [2] contributions to GATE [1]: Hash Gaz-
etteer – based on hash tables instead of FSM (Finite State Machine) with average four
times less memory use and three times faster than an optimized FSM implementation,
Stand-Alone Gazetteer – Java library, which can be used without GATE, Large
Knowledge Base Gazetteer – provides support for ontology-aware NLP and Linked
Data Gazetteer – experimentally uses Linked Open Data for lookups.

2 Token Gazetteer

Gazetteers usually do not depend on any other annotation and matching patterns
are often based on the textual content of the documents. A gazetteer is usually a
standalone lookup tool that allows occurrences of strings from predefined lists to be

found in texts. In his paper, we present two gazetteer approaches; i.e. token-based and
character-based. Our token gazetteer is based on a red-black tree data structure, a
special kind of a binary search tree. We have used java.util.TreeMap<K, V> imple-
mentation, which provides guaranteed log(n) time cost for the containsKey, get, put
and remove operations, where n is a number of entries in the tree map. The tree struc-
ture is efficient for in-order traversal; i.e. left–parent–right (Fig. 1). Each node of the
token gazetteer represents a token with features; e.g. property NE type denoting the
named entity class. Tokens are loaded into the tree structure from gazetteer lists —
simple text files, where each line contains one named entity (NE) and its features like
references, type, note, etc.

Fig. 1. A small example of filled red-black tree structure of token gazetteer

One of the most important parts of the token gazetteer is its tokenizer. It is because
the tokenizer should properly split input text it into tokens, which are consequently
searched in the tree structure. Tokenization is performed in two steps. In the first step,
tokenizer splits the input text into tokens on whitespaces. Resulting tokens are further
tokenized in the second step using a set of regular expressions (Table 1). These pat-
terns can be adjusted as needed.

Regex Matches Example
\p{L}+ One or more code points in the cate-

gory “letter”
(Slovenský)

[\p{L}\d]+ One or more letters or digits #Apollo13.
[-\p{L}&]+ Letter sequences divided by – or & Cartoon:Tom&Jerry
\p{S}+ One or more math symbols, currency

signs, dingbats, box-drawing chars…
€45.00

\d+(?:[.,]\d+)* Decimal or floating point numbers $199.00-$249.00

Table 1. Tokenizer patterns

For instance, text “WIKT2013 (to be held in Herlany)” would be split into follow-
ing six tokens: “WIKT2013”, “(to”, “be”, “held”, “in”, “Herlany)” and in the second
step, they would be further split into nine tokens: “WIKT”, “2013”, “(“, “to”, “be”,
“held”, “in”, “Herlany”, “)”. Tokens from the second step are then searched in the

gazetteer tree structure. Results are saved and the second-step tokens are abandoned.
Search in the tree structure continues with searching for the first-step tokens and their
sequences. This procedure is outlined in pseudo code below:
 set results to empty

 WHILE tokens on input

 set token ← next token from input

 set class ← value mapped on token in the gazetteer tree

 IF class not NIL THEN

 add class/token pair to results

 END IF

 set ceil ← ceiling key for value token + " " in the gazetteer tree

 WHILE tokens on input and ceil starts with token + " "

 set token ← " " + next token from input

 set class ← value mapped on token in the gazetteer tree

 IF class not NIL THEN

 add class/token pair to results

 END IF

 END WHILE

 END WHILE

 return results

Token gazetteer is able to run in case-less mode. In this mode, all list entities are
stored in lowercase format and the input is also converted to lowercase. Furthermore,
gazetteer supports custom identifiers to be specified for records in the lists; e.g. Free-
Base MIDs type (name-of-entity MID), where MID is an ID of an object in Freebase.
Token gazetteer has also a prefix search feature, which enables it to treat list records
as prefixes and search for these prefixes in input tokens. This feature is usable for
special cases like searching for words, which could have inflected forms. The advan-
tage of the token gazetteer is in memory consumption, which grows linearly with the
size of records in a gazetteer list. There is a new node for each record created in the
tree. The memory consumption could be further utilized, because storing of records in
the tree is not optimized; e.g. “Slovak” and “Slovak republic” – the string “Slovak”
would be stored twice in the memory, which is not very effective.

3 Character Gazetteer

Tokenization in the token level deals with multi-travel through the input text, token
boundaries, complexity of regular expressions, non-trivial entities with non-trivial
characters. Due to these reasons, we have tried to construct gazetteer from characters,
which would provide more precise results also for non-trivial cases. Our first idea
came from exercise terms in the Information Retrieval course1 at FIIT STU but unfor-
tunately the first implementation contained impurities that made the code unusable.
The implementation presented in this paper has been completely restructured and

1 http://vi.ikt.ui.sav.sk/User:adamec?view=home

improved for right functionality, better performance and more effective memory us-
age. The character tree consists of a number of nodes, where each node contains:

• Character representing the node
• Reference to the parent node
• List of children nodes
• List of references (e.g. MDI), which also indicates if the node is a tree list node

There is a small example of filled character gazetteer tree structure in Fig. 2. Gray
color indicates last characters of known entities. The tree structure enables fast and
straightforward searching for all the possible entities in input text. In general, human
languages are limited and therefore also the whole space of the tree structure, so it is
possible to load whole tree into machine memory with current hardware possibilities.

Fig. 2. A small example of filled tree structure of character gazetteer

The tree is implemented using java.util.HashMap<K,V> and the lookup time has
an average-case complexity O(1). Complexity of the tokenization algorithm is O(n),
where n is a number of characters in input text. It means, that we need to traverse the
input text nearly one time to obtain results. The matching algorithm can be described
briefly and in very simplified way as follows:
 FOR each character on input buffer stream

 IF current node has a child node mapped on character THEN

 set current node ← child node mapped on character (go deeper in the tree)

 IF current node is a tree list THEN

 record the matched case for later use

 END IF

 ENF IF

 END FOR

Our origin idea was to provide one-time-traverse matching algorithm, but the reali-
zation has shown that it is not possible to check all occurrences of all entities without
the “carry back” part, which realizes jumps to previous positions of the first occur-
rence of white character in the last matched named entity; i.e. possible word start of
other named entity. Therefore, the complexity of the tokenization algorithm is in-
creased but not too much due to the fact that entity lengths are usually short.

M A

G
N E T I C

M A
N

C A
R

B

R A N E

4 Experiments and Evaluations

 Both implementations of token and character gazetteers were tested on datasets
acquired from FreeBase2 – an online collection of structured data harvested from
many sources with the aim of creating a global resource, which allows people and
machines to access common information more effectively. Harvested data is lightly
structured into triples (MDI, type, entity). FreeBase datasets contain millions of enti-
ties such as famous people names, well-known organizations or locations in the
world. There were 3 171 393 person records, 1 498 862 location records and 846 602
organization records in the dataset, which was used for our experiments.

Fig. 3. Memory usage of the character gazetteer

Memory consumption of the character gazetteer is depicted in Fig. 3. It is affected
by character divergence of strings in input datasets. Theoretically, if Unicode charac-
ter representation is used, each node in the gazetteer tree can have as many children as
the number of Unicode characters. Actually, there are 109 384 (≈ 217) code points
assigned in Unicode 6.0. Fortunately, human language is limited and the tree of char-
acter gazetteer will not rise to its theoretical size. Our measures have shown, that
growth ratio of the tree; i.e. number of nodes per character tends to decrease with the
number of inserted entities or characters respectively (Fig. 3).

Character gazetteer provides linear complexity matching solution and fast entity
recognition with precise results. Entities can contain various special characters; e.g.
quotation marks, dash, dot, ampersand, copyright sign. They can have also overlap-
ping parts.

We have compared our two gazetteer implementations with Ontotext’s Hash Gaz-
etteer [2]. The comparison was aimed on processing time and memory consumption.
We have used a list of person names (3 171 393 instances) from FreeBase and popu-
lated all the tree gazetteer instances. The highest memory consumption was measured
for character gazetteer (≈ 3 260 MB), then for hash gazetteer (≈ 900 MB) and the least
for token gazetteer (≈ 865 MB). We have evaluated the processing time on a set of

2 https://developers.google.com/freebase/data

0 10 20 30 40 50

0
5

10
15

characters in millions

no
de

s
in

 m
ill

io
ns

persons
organizations
locations

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

characters in millions

no
de

s
pe

r c
ha

ra
ct

er

persons
organizations
locations

1 390 text documents from CoNLL-2003 dataset. The test corpus was built by merg-
ing train, test A and test B CoNLL datasets. There were 10 measures made for each
gazetteer over the test dataset. Results are depicted in Fig. 4. The box and bold line
represent interquartile range (IQR) and median respectively. The whiskers stands for
minimum and maximum defined as Q1 – 1.5 IQR and Q3 + 1.5 IQR respectively. The
individual point indicates an outlier, which is out of the range of min/max whiskers.
As we can see, character gazetteer has slightly outperformed hash gazetteer and sig-
nificantly token gazetteer.

Fig. 4 Box plot of processing time for three different gazetteers

5 Conclusion

We use token gazetteer and character gazetteers in several of our projects. Charac-
ter gazetteer is nearly 1.8 times faster in matching than token gazetteer. It also works
better for non-trivial cases but consumes more memory than token gazetteer. There-
fore at the moment we spent more efforts on character gazetteer development – we
are also working on tree structure improvement with the aim to reduce memory con-
sumption. Our gazetteers work with real big datasets with millions of entities on input
text of arbitrary length.

Acknowledgement: This work is supported by projects VEGA 2/0185/13, CRISIS
(ESF ITMS 26240220060) and TRADICE (APVV-0208-10).

6 References

1. GATE general architecture for text engineering
http://gate.ac.uk/sale/tao/splitch13.html#sec:gazetteers:lkb-gazetteer

2. Ontotext: Hybrid Semantics and Metadata Management Solutions - GATE Components
and Applications http://www.ontotext.com/collaborations/gate

3. Michal Laclavik, Martin Seleng, Marek Ciglan, Ladislav Hluchy: Ontea: Platform for Pat-
tern based Automated Semantic Annotation. Computing and Informatics, Vol. 28, 2009,
555-579, ISSN 1335-9150

4. Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003
shared task: language-independent named entity recognition. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003 - Volume 4 (CONLL '03),
Vol. 4. Association for Computational Linguistics, Stroudsburg, PA, USA, 142-147.
DOI=10.3115/1119176.1119195 http://dx.doi.org/10.3115/1119176.1119195

CharacterGazetteer
TokenGazetteer

HashGazetteer

600 700 800 900 1000 1100 1200

time [ms]

